Here are all the references from the papers and presentations presented at the 6th Interstellar Symposium in Wichita, KS, November 10-15, 2019. They are organized by the last name of the presenter.

David Burke – Human-Machine Ethics: Experiments in Moral Responsibility

[1] Motyl, P., “Labyrinth: The Art of Decision-Making”, Page Two Books, 2019.

[2] Yates, J.F., Veinott, E.S., and Patalano, A.L., “Hard Decisions, Bad Decisions: On Decision Quality and Decision Aiding”. In Schneider, S.L, and Shanteau, J.C. (Eds.), “Emerging Perspectives on Judgment and Decision Research (pp. 13-63). Cambridge University Press, 2003.

[3] Shortland, N.D., Alison, L.J., and Moran, J.M., “Conflict: How Soldiers Make Impossible Decisions”. Oxford University Press, 2019.

[4] Simon, H. “Administrative Behavior: A study of Decision-Making Processes in Administrative Organizations” Free Press, 1976.

[5] Klein, G., “Sources of Power: How People Make Decisions”, MIT Press, 1997.

[6] Hoffmaster, B., and Hooker, C., “Re-Reasoning Ethics: The Rationality of Deliberation and Judgment in Ethics”, MIT Press, 2018.

[7] Anderson, M., and Anderson, S.L. (Eds.), “Machine Ethics”, Cambridge University Press, 2011.

[8] Wallach, W., and Allen, C., “Moral Machines: Teaching Robots Right From Wrong”, Oxford University Press, 2009.

[9] Leben, D., “Ethics for Robots: How to Design a Moral Algorithm”, Routledge, 2019.

[10] Lin, P., Jenkins, R., and Abney, K (Eds.) “Robot Ethics 2.0: From Autonomous Cars to Artificial Intelligence”, Oxford University Press, 2017.

[11] Lin, P., Abney, K., and Bekey, G.A., “Robot Ethics: The Ethical and Social Implication of Robotics”, MIT Press, 2014.

[12] Arkin, R. “Governing Lethal Behavior in Autonomous Robots“, Routledge, 2009.

[13] Bringsjord, S., Arkoudas, K., and Bello, P., “Toward a General Logicist Methodology for Engineering Ethically Correct Robots”, IEEE Intelligent Systems, 21(4), 38-44, 2006.

[14] MacIntyre, A., “After Virtue: A Study in Moral Theory”, 3 edition, University of Notre Dame Press, 2007.

[15] Waller, B.N., “Against Moral Responsibility”, MIT Press, 2011.

[16] Foot, P., “The Problem of Abortion and the Doctrine of the Double Effect in Virtues and Vices”. Oxford: Basil Blackwell, 1978.

Alexander Cohen – Damage to Relativistic Interstellar Spacecraft by ISM Gas Accumulation

[1] Andersen, H. H., and Ziegler, J. F. Hydrogen Stopping Powers and Ranges in All Elements. Pergamon Press, 1977

[2] Biersack, J. P., and Haggmark, L. G. “A Monte Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets.” Nuclear Instruments and Methods, 1980. doi:10.1016/0029-554x(80)90440-1

[3] Bohdansky, J. “Universal Relation for the Sputtering Yield of Monatomic Solids at Normal Ion Incidence.” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 1983. doi:10.1016/0168-583X(84)90271-4.

[4] Condon, J. B., and Schober, T. Hydrogen Bubbles in Metals. Journal of Nuclear Materials.

[5] Donnelly, S. E. “The Density and Pressure of Helium in Bubbles in Implanted Metals: A Critical Review.” Radiation Effects, 1985. doi:10.1080/00337578508222514.

[6] Draine, B. T. Physics of the Interstellar and Intergalactic Medium. 2010.

[7] Eckstein, W. “Computer Simulation of Ion-Solid Interactions.” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 10, 1992. doi:10.1016/0168-583x(92)95409-k.

[8] Gavish Segev, I., Yahel, E., Silverman, I., and Makov, G. “Blister Formation at Subcritical Doses in Tungsten Irradiated by MeV Protons.” Journal of Nuclear Materials, 2017. doi:10.1016/j.jnucmat.2017.09.024.

[9] Gloeckler, G., and Geiss, J. “Composition of the Local Interstellar Medium as Diagnosed with Pickup Ions.” Advances in Space Research, 2004. doi:10.1016/j.asr.2003.02.054.

[10] Hayward, E., and Deo, C. “Synergistic Effects in Hydrogen–Helium Bubbles.” Journal of Physics: Condensed Matter, 2012. doi:10.1088/0953-8984/24/26/265402.

[11] Hoang, T., Lazarian, A., Burkhart, B., and Loeb, A. “The Interaction of Relativistic Spacecrafts with the Interstellar Medium.” The Astrophysical Journal, 2017. doi:10.3847/1538-4357/aa5da6.

[12] Johnson, D. F., and Carter, E. A. Hydrogen in Tungsten: Absorption, Diffusion, Vacancy Trapping, and Decohesion. 2010.

[13] Klessen, R. S., and Glover, S. C. O. Physical Processes in the Interstellar Medium. In Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality: Saas-Fee Advanced Course 43. Swiss Society for Astrophysics and Astronomy.

[14] Lindhard, J. Energy Loss in Matter by Fast Particles of Low Charge, by J. Lindhard and M. Scharff. E. Munksgaard, KÃ ̧benhavn, 1953.

[15] Lubin, P. “A Roadmap to Interstellar Flight.” JBIS – Journal of the British Interplanetary Society, 2016.

[16] Magnusson, H., and Frisk, K. “Diffusion, Permeation and Solubility of Hydrogen in Copper.” Journal of Phase Equilibria and Diffusion, 2017. doi:10.1007/s11669-017-0518-y.

[17] Martynenko, Y. V. “Damage to Materials in Radiation Blistering.” Sov J Plasma Phys, 1977.

[18] Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata, Y., Miyagawa, S., Morita, K., Shimizu, R., and Tawara, H. Energy Dependence of the Ion-Induced Sputtering Yields of Monatomic Solids. Atomic Data and Nuclear Data Tables.

[19] Robinson, M. T. “The Binary Collision Approximation: Background and Introduction.” Radiation Effects and Defects inSolids, 1994. doi:10.1080/10

[20] Rossing, T. D., Das, S. K., and Kaminsky, M. “Reduction of Surface Erosion in Fusion Reactors.” Journal of Vacuum Science and Technology, Vol. 14, No. 1, 1977, pp. 550–558. doi:10.1116/1.569305.

[21] Ziegler, J. F. Stopping of Energetic Light Ions in Elemental Matter. Journal of Applied Physics.

[22] Ziegler, J. F. SRIM-2003. 2004.

[23] Ziegler, J. F., Ziegler, M. D., and Biersack, J. P. “SRIM – The Stopping and Range of Ions in Matter (2010).” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2010. doi:10.1016/j.nimb.2010.02.091.

Alex Ellery – Will Self-Replication Technology Precede Interstellar Propulsion Technology? The Prospects for Interstellar Self-Replicating Probe and a Human Type III Civilisation

[5] Ellery A (2016) “Solar power satellites for clean energy enabled through disruptive technologies” Proc 23rd World Energy Congress (Award Winning Papers), Istanbul, Turkey, 133-147

[6] Dyson F (1960) “Search for artificial stellar sources of infrared radiation” Science 131, 1667-1668

[9] Bracewell R (1960) “Communications from superior galactic communities” Nature 186, 670-671

[10] Meech K, Weryk R, Micheli M, Kleyna J, Hainaut O, Jedicke R, Wainscroat R, Chembers K, Keane J, Pertric A, Denneau L, Magnier E, Berger T, Huber M, Flewelling H, Waters C, Schunova-Lilly E, Chastel S (2017) “Brief visit from a red and extremely elongated interstellar asteroid” Nature 552, 378-381

[11] Zubrin R (1995) “Detection of extraterrestrial civilisations via the spectral signature of advanced interstellar spacecraft” Progress in the Search for Extraterrestrial Life ASP Conf Series 74, 487-496

[12] Garcia-Escartin C, Chamorro-Posada P (2013) “Scouting the spectrum for interstellar travellers” Acta Astronautica 85, 12-18

[13] Papagiannis M (1978) “Are we alone or could they be in the asteroid belt” Quarterly J Royal Astronomical Society 19, 277-281

[14] Freitas R, Valdes F (1980) “Search for natural or artificial objects located at the Earth-Moon libration points” Icarus 42, 442

[15] Haqq-Misra J, Kopparapu K (2012) “On the likelihood of non-terrestrial artifacts in the Solar System” Acta Astronautica 72, 15-20

[16] Davies P, Wagner R (2013) “Searching for alien artifacts on the Moon” Acta Astronautica 89, 261-265

[17] Freitas R, Healy T & Long J (1982) “Advanced automation for space missions” J Astronautical Sciences 30 (1), 1-11

[18] Freitas R (1980) “Self-reproducing interstellar probe” J British Interplanetary Society 33, 251-264

[19] Tough A (1998) “Small smart interstellar probes” J British Interplanetary Society 51, 175-179

[20] Tipler F (1980) “Extraterrestrial beings do not exist” Quarterly J Royal Astronomical Society 21, 267-281

[21] Hart M (1975) “Explanation for the absence of extraterrestrials on Earth” Quarterly J Royal Astronomical Society 16, 128-135

[22] Ellery A, Tough A, Darling D (2003) “SETI – a scientific critique and a proposal for further observational modes“ J British Interplanetary Society 56 (7/8), 262-287

[23] Ringwood A (1966) “Chemical evolution of the terrestrial planets” Geochimica et Cosmochimica Acta 30, 41-104

[24] Vincent J, Bogatyreva O, Bogatyrev N, Bowyer A, Pahl A-K (2006) “Biomimetics: its practice and theory” J Royal Society Interface 3, 471-482

[25] Ellery A, Howe S (2018) “Robust asteroid impact mitigation by viral infection-induced exocytosis” Proc 16th Reinventing Space Conf, London, UK

[26] Webb S (2002) “If the Universe is teeming with aliens, where is everybody? Fifty solutions to the Fermi paradox and the problem of extraterrestrial life” Copernicus-Springer Publishers, Chichester, UK

[27] Baxter S (2001) “Planetarium hypothesis: a resolution of the Fermi paradox” J British Interplanetary Society 54, 210-216

[28] Armstrong S, Sandberg A (2013) “Eternity in six hours: intergalactic spreading of intelligent life and sharpening the Fermi paradox” Acta Astronautica 89, 1-13

[29] Ward P, Brownlee D (2003) “Rare Earth: why complex life is uncommon in the Universe” Copernicus-Springer Publishers, Chichester, UK

[30] Ellery A (2010) “Selective snapshot of state-of-the-art artificial intelligence and robotics with reference to the Icarus starship” J British Interplanetary Society 62, 427-439

[31] Ganek A & Corbi T (2003) “Dawning of the autonomic computing era” IBM Systems J 42 (1), 5-18

[32] Ellery A (2015) “Artificial intelligence through symbolic connectionism – a biomimetic rapprochement” in Biomimetic Technologies: Principles & Applications (ed. Ngo D), Elsevier Publishing

[33] Ellery A (2019) “Artificial intelligence techniques – hybrid symbolic neutral network systems” DRDC Scientific Report 2, Ottawa Research Centre

[34] Ellery A & Eiben A (2019) “To evolve or not to evolve? That is the question” Proc ALIFE Conf, 357-364

[35] Costello D, Forney D (2007) “Channel coding: the road to channel capacity” Proc IEEE 95 (6), 1150-1177

[36] Joy B (2000) “Why the future doesn’t need us” Wired Magazine (April)

[37] Forgan D (2019) “Predator-prey behaviour in self-replicating interstellar probes” arXiv:1903.00770v1 2 Mar 2019

[38] Sagan C, Newman W (1983) “Solipsist approach to extraterrestrial intelligence” Quarterly J Royal Astronomical Society 24, 151-161 [39] Ellery A (2017) “Space exploration through self-replication technology compensates for discounting in NPV cost-benefit analysis – a business case?” New Space J 5 (3), 141-154

[40] Crick F, Orgel L (1973) “Directed panspermia” Icarus 19 (3), 341-348

[41] Burchell M, McDermott K, Price M, Yolland L (2014) “Survival of fossils under extreme shocks induced by hypervelocity impacts” Phil Trans Royal Society A 372, article no 20130190

[42] Yokoo H, Oshima T (1979) “Is bacteriophage фX174 DNA a message from an extraterrestrial intelligence?” Icarus 38, 148-153

[43] Bond A, Martin A (1984) “World Ships – an effective assessment of the engineering feasibility” J British Interplanetary Society 37 (6),

[44] Ellery A, Lowing P, Mellor I, Conti M, Wanjara P, Bernier F, Kirby M, Carpenter K, Dillon P, Dawes W, Sibille L, Mueller R (2018) “Towards in-situ manufacture of magnetic devices from rare earth materials mined from asteroids” Proc Int Symp Artificial Intelligence Robotics & Automation in Space, Madrid, Spain, paper no. 10c-1

[45] Ellery A (2016) “Are self-replicating machines feasible?” AIAA J Spacecraft & Rockets 53 (2), 317-327

[46] Ellery A (2018) “Engineering a lunar photolithoautotroph to thrive on the Moon – life or simulacrum?” Int J Astrobiology S1473550417000532

[47] Kardashev N (1964) “Transmission of information by extraterrestrial civilisations” Soviet Astronomy 8, 217-221

[48] Burks A, von Neumann J (1966) Theory of Self-Reproducing Automata, University of Illinois Press

[49] Sipper M (1999) “Emergence of cellular computing” IEEE Computer (Jul), 18-26

[50] Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) “RepRap – the replicating rapid prototyper” Robotica 29 (Jan), pp. 177-191

[51] Hahnloser R, Sarpeshkar R, Mahowald M, Douglas R, Seung S (2000) “Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit” Nature 405, 947-951

[52] Hsu K-Y, Li H-Y, Psaltis D (1990) “Holographic implementation of a fully connected neural network” Proc IEEE 78 (10), 1637-1645

[53] Chang O, Lipson H (2018) “Neural network quine” arXiv:1803.05859v4 24 May 2018 [54] Ellery A, Lowing P, Wanjara P, Kirby M, Mellor I, Doughty G (2017) “FFC Cambridge process and metallic 3D printing for deep in-situ resource utilisation – a match made on the Moon”Proc Int Astronautics Congress, Adelaide, Australia, IAC-17-D4.5.4×39364

[55] Dietrich T, Freitag A, Scholz R (2005) “Production and characteristics of microreactors made from glass” Chemical Engineering & Technology 28 (4), 1-7

[56] Bond A & Project Daedalus Study Group (1978) “Project Daedalus – Final Report on the BIS Starship Study” J British Interplanetary Society Supplement

[57] Bussard R (1960) “Galactic matter and interstellar flight” Acta Astronautica 6, 25-35

[58] Bond A (1974) “Analysis of the potential performance of the ram-augmented interstellar rocket” J British Interplanetary Society 29 (2), 674-688

[59] Forward R (1982) “Antimatter propulsion” J British Interplanetary Society 35, 391-395

[60] Forward R (1984) “Roundtrip interstellar travel using laser-pulsed lightsails” J Spacecraft 21 (2), 187-195

[61] Bond A & Project Daedalus Study Group (1978) “Project Daedalus – Final Report on the BIS Starship Study” J British Interplanetary Society Supplement

[62] Fisk Z & Sarrao J (1997) “New generation high-temperature superconductors” Annual Reviews Material Science 27, 35-67

[63] Matloff G, Mallove E (1988) “Interstellar flight: aspects of beamed electric propulsion” Proc Int Electric Propulsion Conf, 499-501

[64] Benford J (2017) “Sailships vs fusion rockets: a contrarian view” J British Interplanetary Society 70, 175-183

[65] Madey J (2014) “Wilson prize article: from vacuum tubes to lasers and back again” Physical Review Special Topics – Accelerators & Beams 17, 074901

[66] O’Shea P, Freund H (2001) “Free electron lasers: status and applications” Science 292, 1853-1858

[67] Barletta W, Bisognano J, Corlett J, Emma P, Huang Z, Kim K-J, Lindberg R, Murphy J, Neil G, Nguyen D, Pellegrini C, Rimmer R, Sannibale F, Stupakov G, Walker R, Zholents A (2010) “Free electron lasers: present status and future challenges” Nuclear Instruments & Methods in Physics Research A618, 69-96

[68] Krishnagopal S, Kumar V, Maiti S, Prabhu S, Sarkar S (2004) “Free electron lasers” Current Science 87 (8), 1066-1078

[69] Orzechowski T (1990) “Intense microwave generation using free electron lasers” Lawrence Livermore National Laboratory Report URCL-JC-104640

[70] Huang Y-C, Chen C-H, Huang K-Y (2008) “20 MW desktop free electron laser at THz frequencies” Proc 17th Int Conf High Power Particle Beams, 1-3

[71] Huang Y-C (2010) “Desktop megawatt superradiant free electron laser at terahertz frequencies” Applied Physics Letters 96, 231503

[72] Bakhtyari A, Brownell J (2003) “Horn resonator boosts miniature free electron laser power” Applied Physics Letters 82 (19), 3150-3152

[73] Pellegrini C (2016) “X-ray free electron lasers: from dreams to reality” Physics Scripts T169, 014004

[74] Seddon E, Clarke J, Dunning D, Masciovecchio C, Milne C, Parmigiani F, Rugg D, Spence J, Thompson N, Ueda K, Vinko S, Wurth W (2017) “Short wavelength free electron laser sources and science: overview” Reports on Progress in Physics 80, 115901

[75] Haga A, Senda S, Sakai Y, Mizuta Y, Kita S, Okuyama F (2004) “Miniature X-ray tube” Applied Physics Letters 84 (12), 2208-2210

[76] Landis G (1999) “Microwave-pushed sails for interstellar travel” Proc 10th Advanced Propulsion Workshop, Huntsville, Ala

[77] Landis G (1999) “Microwave-pushed sails for interstellar travel” Proc 10th Advanced Propulsion Workshop, Huntsville, Ala

[78] Forward R (1984) “Roundtrip interstellar travel using laser-pulsed lightsails” J Spacecraft 21 (2), 187-195

[79] Ellery A (2016) “Low-cost space-based geoengineering: an assessment based on self-replicating manufacturing of in-situ resources on the Moon” Int J Environmental, Chemical, Ecological, Geological and Geophysical Engineering 10 (2), S. 278–285

[80] Lynch B, Jiang X-X, Ellery A, Nitzsche F (2016) “Characterisation, modelling and control of NiTi shape memory alloy based on electrical resistance feedback” J Intelligent Material Systems & Structures DOI: 10.1177/1045389X16633764

[81] Low Z-X, Chua T, Ray B, Mattia D, Metcalfe I, Patterson A (2017) “Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques” J Membrane Science 523 (2), 596-613

[82] Felton S, Tolley M, Demaine E, Rus D, Wood R (2014) “Method for building self-folding machines” Science 345, 644-646

[83] Cassenti B, Matloff G, Strobl J (1996) “Structural response and stability of interstellar solar sails” J British Interplanetary Society 49, 345-350

[84] Moeckel W (1972) “Propulsion by impinging laser beams” J Spacecraft 9 (12), 942-944

[85] Forward R (1984) “Roundtrip interstellar travel using laser-pulsed lightsails” J Spacecraft 21 (2), 187-195

[86] Perakis N, Schrenk, Gutsmiedl J, Koop A, Losekamm M (2016) “Project Dragonfly: a feasibility study of interstellar travel using laser-powered light sail propulsion” Acta Astronautica 129, 316-324

[87] Ellery A (2003) “A critique of SETI science”Proc SETICon 03 (3rd SETI League Technical Symposium), New Jersey, USA, 62-68

[88] Femmer T, Kuehne A, Wessling M (2014) “Print your own membrane: direct rapid prototyping of polydimethylsiloxane” Lab Chip 14, 2610-2613

Jeffrey K. Greason – Reaction Drive Powered by External Dynamic Pressure as Second Stage for Interstellar Flight

[1] R. Zubrin and D. Andrews, “Magnetic Sails and Interplanetary Travel,” 25th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 89-2441, AIAA, Washington, D.C., 1989. doi: 10.2514/6.1989-2441

[2] P. Janhunen, “Electric Sail for Spacecraft Propulsion,” AIAA Journal of Propulsion and Power, v 20 no 4, 2004, pp 763-764. doi: 10.2514/1.8580

[3] J. Slough and L. Giersch, “The Plasma Magnet”, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2005-4461, AIAA, Washington, D.C. 2005. doi: 10.2514/6.2005-4461

[4] R. Zubrin, “Dipole Drive for Space Propulsion,” JBIS, 70, 2017, pp. 442-448

[5] D. Brisbin, “Spacecraft with Interstellar Medium Momentum Exchange Reactions: The Potential and Limitations of Propellantless Interstellar Travel,” JBIS, 72, pp 116-124, 2019

[6] J. Gilland & G. Williams, “The Challenges of Ambient Plasma Wave Propulsion”, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013-3876, AIAA, Washington D.C, 2013. doi: 10.2514/6.2013-3876

[7] A. Bond, “An Analysis of the Potential Performance of the Ram Augmented Interstellar Rocket”, JBIS, 27, 1974, pp. 674-685.

[8] J. Greason, “A Reaction Drive Powered by External Dynamic Pressure”, JBIS, 72, 2019, pp. 146-152. (electronic copy retrieved from https://tauzero.aero/wp-content/uploads/JBIS-May-2019-Greason.pdf on October 20, 2019)

[9] S. Kaplan, Interstellar Gas Dynamics, Pergamon Press, London, 1966, p. 37

[10] F. Zwicky, “Fundamentals of Propulsive Power,” International Conference for Applied Mechanics, Paris, September 1946. Collected in Morphology of Propulsive Power, Society for Morphological Research, Pasadena, 1962, p. 37-47.

[11] M. Munk, “Notes on Propeller Design – IV”, NACA Technical Note No. 96, May, 1922, p. 6

[12] A. Lavoie, “Tethered Satellite System (TSS-1R) Post Flight (STS-75) Engineering Performance Report”, Report JA-2422, Document ID 20010022502, NASA, Huntsville, August 01, 1996. (electronic copy retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010022502.pdf on October 20, 2019)

[13] M. Kruijff, E. van der Heide, W. Ockels, and E. Gill, “First Mission Results of the YES2 Tethered SpaceMail Experiment”, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA 2008-7385, AIAA, August 2008. doi: 10.2514/6.2008-7385

[14] U. Shumlak, R. Lilly, C. Adams, and R. Golingo, “Advanced Space Propulsion Based on the Flow-Stabilized Z-Pinch Fusion Concept”, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2006-4805, AIAA, Washington D.C., 2006. doi: 10.2514/6.2006-4805

[15] T. Kammash, M. Lee, and D. Galbraith, “High-Performance Fusion Rocket for Manned Space Missions”, Fusion Energy in Space Propulsion: Progress in Astronautics and Aeronautics, v. 167, AIAA, Washington, D.C., 1995, p. 47ff. doi: 10.2514/5.9781600866357.0047.0074

[16] R. Ewig & D. Andrews, “Mini-Mag-Orion: A Pulsed Nuclear Rocket for Crewed Solar System Exploration”, 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2003-4525, AIAA, Washington, D.C., 2003 doi: 10.2514/6.2003-4525

[17] R. Hyde, “A Laser-Fusion Rocket for Interplanetary Propulsion”, UCRL-88857, University of California, Livermore, CA, 1983 (electronic copy retrieved from https://www.osti.gov/servlets/purl/5619090 on October 20, 2019)

[18] B. Cassenti, “Lithium Hydride in Nuclear Pulse Propulsion”, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference

[19] R. Clark and R. Sheldon, “Dusty Plasma Based Fission Fragment Nuclear Reactor”, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2002-3930, AIAA, Washington, D.C., 2002 doi: 10.2514/6.2002-3930

[20] G. Jackson and S. Howe, “Antimatter Driven Sail for Deep-Space Missions”, Proceedings of 2003 Particle Accelerator Conference, IEEE, Portland, OR, 2003, p. 705 (electronic copy retrieved from http://accelconf.web.cern.ch/accelconf/p03/papers/foaa005.pdf on October 20, 2019) doi: 10.1063/1.1867171

[21] R. Lenard & D. Andrews, “Use of Mini-Mag Orion and superconducting coils for near-term interstellar transportation”, Acta Astronautica, v. 61, June-August 2007, p. 450-458. doi: 10.1016/j.actaastro.2007.01.052

[22] G. Matloff, “8.4 The Ramjet Runway”, Deep-Space Probes, Springer-Praxis, Chichester, 2000, pp 110-112. doi: 10.1007/978-1-4471-3641-5

[23] J. Brophy et. al., “A Breakthrough Propulsion Architecture for Interstellar Precursor Mission: Phase I Final Report”, NASA report HQ-E-DAA-TN58806, NASA, Washington, D.C., 2018. (electronic copy retrieved from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180006589.pdf on October 20, 2019)

[24] D. Whitmire and A. Jackson, “Laser Powered Interstellar Ramjet”, JBIS, 30, 1977, p. 223-226.

Jacob Erlikhman, Jonathan Suen, Antonio Sanchez-Rubio, Prashant Srinivasan, Will Hettel, Peter Meinhold, Peter Krogen, and Philip Lubin – Analysis of Stability of Light Sails Under Acceleration from 50 GW Laser with COMSOL and Analytic Analyses

[1] Lubin, P., “A roadmap to interstellar flight,” JBIS (2016).

[2] Srinivasan, P., Hughes, G. B., Lubin, P., Zhang, Q., Madajian, J., Brashears, T., Kulkarni, N., Cohen, A., and Griswold, J., “Stability of laser-propelled wafer satellites,” in [Planetary Defense and Space Environment Applications], Hughes, G. B., ed., 9981, 32 – 42, International Society for Optics and Photonics, SPIE (2016).

Katelyn A. Greene, Kyle P. McNamara, PhD, and Ashley A. Weaver – Computationally Assessing Crewmember Musculoskeletal Health with Long-Duration Spaceflight

[1] Hides, J. A., Lambrecht, G., Stanton, W. R., and Damann, V. “Changes in multifidus and abdominal muscle size in response to microgravity: possible implications for low back pain research,” European Spine Journal Vol. 25, No. 1, 2016, pp. 175-182.

[2] Burkhart, K., Allaire, B., and Bouxsein, M. L. “Negative Effects of Long-duration Spaceflight on Paraspinal Muscle Morphology,” Spine Vol. 44, No. 12, 2019, pp. 879-886.

[3] Sibonga, J., Matsumoto, T., Jones, J., Shapiro, J., Lang, T., Shackelford, L., Smith, S., Young, M., Keyak, J., and Kohri, K. “Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss,” Bone Vol. 128, 2019, p. 112037.

[4] Orwoll, E. S., Adler, R. A., Amin, S., Binkley, N., Lewiecki, E. M., Petak, S. M., Shapses, S. A., Sinaki, M., Watts, N. B., and Sibonga, J. D. “Skeletal health in long‐duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit,” Journal of bone and mineral research Vol. 28, No. 6, 2013, pp. 1243-1255.

[5] Bailey, J. F., Miller, S. L., Khieu, K., O’Neill, C. W., Healey, R. M., Coughlin, D. G., Sayson, J. V., Chang, D. G., Hargens, A. R., and Lotz, J. C. “From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability,” The Spine Journal Vol. 18, No. 1, 2018, pp. 7-14.

[6] McNamara, K. P., Greene, K. A., Moore, A. M., Lenchik, L., and Weaver, A. A. “Lumbopelvic Muscle Changes Following Long-Duration Spaceflight,” Frontiers in physiology Vol. 10, 2019.

[7] Lang, T. F. “What do we know about fracture risk in long-duration spaceflight?,” J Musculoskelet Neuronal Interact Vol. 6, No. 4, 2006, pp. 319-21.

[8] Muir, J., Judex, S., Qin, Y.-X., and Rubin, C. “Postural instability caused by extended bed rest is alleviated by brief daily exposure to low magnitude mechanical signals,” Gait & posture Vol. 33, No. 3, 2011, pp. 429-435.

[9] Ramachandran, V., Dalal, S., Scheuring, R. A., and Jones, J. A. “Musculoskeletal injuries in astronauts: review of pre-flight, in-flight, post-flight, and extravehicular activity injuries,” Current Pathobiology Reports Vol. 6, No. 3, 2018, pp. 149-158.

[10] Keyak, J., Koyama, A., LeBlanc, A., Lu, Y., and Lang, T. “Reduction in proximal femoral strength due to long-duration spaceflight,” Bone Vol. 44, No. 3, 2009, pp. 449-453.

[11] Choksi, P., Jepsen, K. J., and Clines, G. A. “The challenges of diagnosing osteoporosis and the limitations of currently available tools,” Clinical diabetes and endocrinology Vol. 4, No. 1, 2018, p. 12.

[12] Treece, G. M., and Gee, A. H. “Independent measurement of femoral cortical thickness and cortical bone density using clinical CT,” Medical Image Analysis Vol. 20, No. 1, 2015, pp. 249-264.

[13] McNamara, K. P., Greene, K. A., Tooze, J., Dang, J., Khattab, K., Lenchik, L., and Weaver, A. A. “Neck Muscle Changes Following Long-Duration Spaceflight,” Frontiers in physiology Vol. 10, 2019, p. 1115.

[14] Lang, T., Cauley, J. A., Tylavsky, F., Bauer, D., Cummings, S., and Harris, T. B. “Computed tomographic measurements of thigh muscle cross‐sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study,” Journal of Bone and Mineral Research Vol. 25, No. 3, 2010, pp. 513-519.

[15] Valentin, S., Licka, T., and Elliott, J. “Age and side-related morphometric MRI evaluation of trunk muscles in people without back pain,” Manual therapy Vol. 20, No. 1, 2015, pp. 90-95.

[16] Keyak, J. H., Kaneko, T. S., Tehranzadeh, J., and Skinner, H. B. “Predicting proximal femoral strength using structural engineering models,” Clinical Orthopaedics and Related Research® Vol. 437, 2005, pp. 219-228.

[17] Gayzik, F., Moreno, D., Geer, C., Wuertzer, S., Martin, R., and Stitzel, J. J. A. o. b. e. “Development of a full body CAD dataset for computational modeling: a multi-modality approach,” Vol. 39, No. 10, 2011, p. 2568.

[18] Schwartz, D., Guleyupoglu, B., Koya, B., Stitzel, J. D., and Gayzik, F. S. J. T. i. p. “Development of a computationally efficient full human body finite element model,” Vol. 16, No. sup1, 2015, pp. S49-S56.

[19] Bookstein, F., Schäfer, K., Prossinger, H., Seidler, H., Fieder, M., Stringer, C., Weber, G. W., Arsuaga, J. L., Slice, D. E., and Rohlf, F. J. J. T. A. R. A. O. P. o. t. A. A. o. A. “Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis,” Vol. 257, No. 6, 1999, pp. 217-224.

[20] Schoell, S. L., Weaver, A. A., Urban, J. E., Jones, D. A., Stitzel, J. D., Hwang, E., Reed, M. P., and Rupp, J. D. “Development and validation of an older occupant finite element model of a mid-sized male for investigation of age-related injury risk.” SAE Technical Paper, 2015.

[21] Kopperdahl, D. L., Morgan, E. F., and Keaveny, T. M. J. J. o. o. r. “Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone,” Vol. 20, No. 4, 2002, pp. 801-805.

[22] Ulrich, D., Van Rietbergen, B., Laib, A., and Ruegsegger, P. J. B. “The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone,” Vol. 25, No. 1, 1999, pp. 55-60.

[23] Mosekilde, L., Mosekilde, L., and Danielsen, C. J. B. “Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals,” Vol. 8, No. 2, 1987, pp. 79-85.

[24] Besl, P. J., and McKay, N. D. “Method for registration of 3-D shapes,” Sensor fusion IV: control paradigms and data structures. Vol. 1611, International Society for Optics and Photonics, 1992, pp. 586-606.

[25] Golman, A. J., Danelson, K. A., Gaewsky, J. P., Stitzel, J. D. J. C. m. i. b., and engineering, b. “Implementation and validation of thoracic side impact injury prediction metrics in a human body model,” Vol. 18, No. 10, 2015, pp. 1044-1055.

[26] Kayanja, M. M., Ferrara, L. A., and Lieberman, I. H. J. T. S. J. “Distribution of anterior cortical shear strain after a thoracic wedge compression fracture,” Vol. 4, No. 1, 2004, pp. 76-87.

[27] Kopperdahl, D. L., and Keaveny, T. M. J. J. o. b. “Yield strain behavior of trabecular bone,” Vol. 31, No. 7, 1998, pp. 601-608.

[28] Nightingale, R. W., Chancey, V. C., Ottaviano, D., Luck, J. F., Tran, L., Prange, M., and Myers, B. S. J. J. o. b. “Flexion and extension structural properties and strengths for male cervical spine segments,” Vol. 40, No. 3, 2007, pp. 535-542.

Dr. Gerald P. Jackson – Antimatter-Based Interstellar Propulsion

[1] Lubin, P., “A Roadmap to Interstellar Flight,” Journal of the British Interplanetary Society, Vol. 69, no. 2-3, pp.40-72, 2016.

[2] Parkin, K.L., “The Breakthrough Starshot System Model,” Acta Astronautica, vol. 152, pp. 370–384, 2018. doi: 10.1016/j.actaastro.2018.08.035

[3] Atwater, H.A., Davoyan, A.R., Ilic, O., Jariwala, D., Sherrott, M.C., Went, C.M., Whitney, W.S. , and Wong, J., “Materials Challenges for the Starshot Lightsail,” Nature Materials, Vol. 17, pp. 861-867, 2018. doi: 10.1038/s41563-018-0075-8.

[4] Hoang, T., Lazarian, A., Burkhart, B., and Loeb, A., “The Interaction of Relativistic Spacecrafts with the Interstellar Medium,” The Astrophysical Journal, Vol. 837, No. 1, 16pp 1 March 2017. doi: 10.3847/1538-4357/aa5da6

[5] G. Jackson and S. Howe, “Antimatter Driven Sail for Deep Space Missions”, Proc. 2003 Particle Accelerator Conf., pp. 705-7, (IEEE, Portland), ISBN: 0-7803-7738-9, 2003.

[6] Anglada-Escudé, G., Amado, P.J., Barnes, J., Berdiñas, Z.M., Butler, R.P., Coleman, G.A. L., de La Cueva, I., Dreizler, S., Endl, M., Giesers, B., Jeffers, S.V., Jenkins, J.S., Jones, H.R.A., Kiraga, M., Kürster, M., López-González, M.J., Marvin, C.J., Morales, N., Morin, J., Nelson, R.P., Ortiz, J.L., Ofir, A., Paardekooper, S.-J., Reiners, A., Rodríguez, E., Rodríguez-López, C., Sarmiento, L.F., Strachan, J.P., Tsapras, Y., Tuomi, M., and Zechmeister, M., “A Terrestrial Planet Candidate in a Temperate Orbit around Proxima Centauri,” Nature, Vol. 536, Issue 7617, pp. 437–440, 2016 doi: 10.1038/nature19106.

[7] Strughold, H., The Green and Red Planet: A Physiological Study of the Possibility of Life on Mars, University of New Mexico Press, 1953, ISBN: 978-1258378509.

[8] Huggett, R.J., Geoecology: An Evolutionary Approach, Routledge, Chapman & Hall. p. 10. 1995, ISBN: 978-0-415-08689-9.

[9] Damasso1, M. and Del Sordo, F., “Proxima Centauri Reloaded: Unravelling the Stellar Noise in Radial Velocities”, Astronomy & Astrophysics, submitted for publication, arXiv:1612.03786.

[10] Bonfils, X., Astudillo-Defru, N., Díaz, R., Almenara, J.-M., Forveille, T., Bouchy, F., Delfosse, X., Lovis, C., Mayor, M., Murgas, F., Pepe, F., Santos, N. C., Ségransan, D., Udry, S., and Wünsche1, A., “A Temperate Exo-Earth Around a Quiet M Dwarf at 3.4 Parsec,” A&A, Vol. 613, No. A25, 2018. doi: 10.1051/0004-6361/201731973.

[11] Astudillo-Defru, N., Díaz, R. F., Bonfils, X., Almenara, J. M., Delisle, J.-B., Bouchy, F., Delfosse, X., Forveille, T., Lovis, C., Mayor, M., Murgas, F., Pepe, F., Santos, N. C., Ségransan, D., Udry, S., and Wünsche, A., “The HARPS Search for Southern Extra-Solar Planets,” A&A, Vol. 605, No. L11, 2017. doi: 10.1051/0004-6361/201731581

[12] Anglada-Escude, G., Arriagada, P., Tuomi, M., Zechmeister, M., Jenkins, J.S., Ofir, A., Dreizler, S., Gerlach, E., Marvin, C.J., Reiners, A., Jeffers, S.V., Butler, R.P., Vogt, S.S., Amado, P.J., Rodríguez-López, C., Berdiñas, Z.M., Morin, J., Crane, J.D., Shectman, S.A., Thompson, I.B., Díaz, M., Rivera, E., Sarmiento, L.F., and Jones, H.R.A., “Two Planets Around Kapteyn’s Star: a Cold and a Temperate Super-Earth Orbiting the Nearest Halo Red Dwarf,” Monthly Notices of the Royal Astronomical Society: Letters, Vol. 443, Issue 1, pp. L89–L93, 1 September 2014. doi: 10.1093/mnrasl/slu076.

[13] Wright, D.J., Wittenmyer, R.A., Tinney, C.G., Bentley, J.S., and Zhao, J., “Three Planets Orbiting Wolf 1061”, The Astrophysical Journal Letters, Vol. 817, Issue 2, No. L20, 7 pp., 2016. doi: 10.3847/2041-8205/817/2/L20

[14] Anglada-Escudé, G., Arriagada, P., Vogt, S.S., Rivera, E.J., Butler, R.P., Crane, J.D., Shectman, S.A., Thompson, I.B., Minniti, D., Haghighipour, N., Carter, B.D., Tinney, C.G., Wittenmyer, R.A., Bailey, J.A., O’Toole, S.J., Jones, H.R.A., and Jenkins, J.S., “A Planetary System Around the Nearby M Dwarf GJ 667C with At Least One Super-Earth in Its Habitable Zone,” The Astrophysical Journal Letters, Vol. 751, Issue 1, No. L16, 6 pp., 2012. doi: 10.1088/2041-8205/751/1/L16

[15] Dessler, A.J., “Solar wind and interplanetary magnetic field,” Reviews of Geophysics and Space Physics, Vol. 5, No. 1, pp. 1–41, February 1967. doi: 10.1029/RG005i001p00001.

[16] Bocquet, J.P., Malek, F., Nifenecker, H., Rey-Campagnolle, M., Maurel, M., Monnand, E., Perrin, P., Ristori, C., Ericsson, G., Johansson, T., Tibell, G., Polikanov, S., Krogulski, T., and Mougey, J., “Prompt Fission Induced by Antiproton Annihilation at Rest on Heavy Nuclei,” Zeitschrift für Physik A Hadrons and Nuclei, Vol. 342, No. 2, pp. 183-189, June 1992. doi :10.1007/BF01288467

[17] Hofmann, P., Iljinov, A.S., Kim, Y.S., Mebel, M.V., Daniel, H., David, P., von Egidy, T., Haninger, T., Hartmann, F.J., Jastrzebski, J., Kurcewicz, W., Lieb, J., Machner, H., Plendl, H.S., Riepe, G., Wright, B., and Ziock, K., “Fission of Heavy Nuclei Induced by Stopped Antiprotons. I. Inclusive Characteristics of Fission Fragments”, Physical Review C, Vol. 49, p. 2555, May 1994. doi: 10.1103/PhysRevC.49.2555

[18] Kim, Y. S., Iljinov, A.S., Mebel, M.V., Hofmann, P., Daniel, H., von Egidy, T., Haninger, T., Hartmann, F.J., Machner, H., Plendl, H.S., and Riepe, G., “Fission of Heavy Nuclei Induced by Stopped Antiprotons. II. Correlations Between Fission Fragments”, Physical Review C, Vol. 54, No. 5, p. 2469, November 1996. doi: 10.1103/PhysRevC.54.2469

[19] Lebedev, V., Pasquinelli, R., Prost, L., and Shemyakin, A., “Antiproton Production and Cooling”, Accelerator Physics at the Tevatron Collider, Springer, pp. 259-410, 2014. doi: 10.1007/978-1-4939-0885-1

[20] Pasquinelli, R., Drendel, B., Gollwitzer, K., Johnson, S., Lebedev, V., Leveling, A., Morgan, J., Nagaslaev, V., Peterson, D., Sondgeroth, A., and Werkema, S., “Progress in Antiproton Production at the Fermilab Tevatron Collider”, Proceedings 2009 Particle Accelerator Conf., Vancouver, pp. 1463-5, 2009, ISBN: 9783954501007.

[21] Forward, R., “Antiproton annihilation propulsion,” Journal of Propulsion and Power, Vol. 1, No. 5, pp. 370-374, 1985. doi:10.2514/3.22811

[22] Frisbee, R., “How to Build an Antimatter Rocket for Interstellar Missions – Systems Level Considerations in Designing Advanced Propulsion Technology Vehicles,” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences, 2003. doi:10.2514/6.2003-4676

[23] Nieto, M.M., Holzscheiter, M.H., and Phillips, T.J., “Dense Antihydrogen: Its Production and Storage to Envision Antimatter Propulsion,” J. Opt. B: Quantum Semiclass. Opt., Vol. 5, No. 6, S547, October 2003. doi:10.1088/1464-4266/5/6/001

[24] O’day, S., and Bieniosek, F., “Antiproton Production Measurements at the Fermilab Antiproton Source,” Proc. 1994 European Particle Accelerator Conf., London, World Scientific, pp. 2438-40, 1994, ISBN: 978-9810219284.

[25] Dugan, G., Hojvat, C., Lennox, A.J., Biallas, G., Cilyo, F., Leininger, M., McCarthy, J., Sax, W., and Snowdon, S., “Mechanical and Electrical Design of the Fermilab Lithium Lens and Transformer System,” IEEE Transactions on Nuclear Science, Vol. NS-30, No. 4, pp. 3660-2, August 1983.

[26] Mokhov, N., and Van Ginneken, A., “Increasing Antiproton Yields Via Recirculating Beam Targeting,” Internal Fermilab Report FERMILAB-FN-0621, Batavia IL, USA, 1994.

[27] D. Ghitelman, The Space Telescope, Gallery Books, 1st Edition, 1988, ISBN: 978-0831778719.

[28] Trauger, J.T., Ballester, G.E., Burrows, C.J., Casertano, S., Clarke, J.T., Crisp, D., Evans, R.W., Gallagher III, J.S., Griffiths, R.E., Hester, J.J., Hoessel, J.G., Holtzman, J.A., Krist, J.E., Mould, J.R., Scowen, P.A., Stapelfeldt, K.R., Watson, A.M., and Westphal, J.A., “The On-Orbit Performance of WFPC2,” Astrophysical Journal Letters Vol. 435, p. L3, 1994. doi: 10.1086/187580

[29] Domingue, D.L., and Russell, C.T., editors. Messenger Mission to Mercury, 1st edition, Springer, New York, pp. 225–245. 2007, ISBN: 9780387772141.

[30] Hawkins III, S.E., Boldt, J.D., Darlington, E.H., Espiritu, R., Gold, R.E., Gotwols, B., Grey, M.P., Hash, C.D., Hayes, J.R., Jaskulek, S.E., Kardian Jr., C.J., Keller, M.R., Malaret, E.R., Murchie, S.L., Murphy, P.K., Peacock, K., Prockter, L.M., Reiter, R.A., Robinson, M.S., Schaefer, E.D., Shelton, R.G., Sterner II, R.E., Taylor, H.W., Watters, T.R., and Williams, B.D., “The Mercury Dual Imaging System on the MESSENGER,” Spacecraft Space Sci. Rev., Vol. 131, pp. 247–338, 2007. doi: 10.1007/s11214-007-9266-3

[31] Spencer, J.R. Bu,ie, M.W., Parker, A.H., Weaver, H.A., Porter, S.B., Stern, S.A., Benecchi, S.D., Zangari, A.M., Verbiscer, A.J., Gwyn, S.D.J., Petit, J.-M., Kavelaars, J.J., Sterner, R., Borncamp, D.M., Noll, K.S., Tholen, D.J., Showalter, M.R., Fuentes, C.I., Belton, M.J.S., and Binzel, R.P., “The Successful Search for a Post-Pluto KBO Flyby Target for New Horizons Using the Hubble Space Telescope,” European Planetary Science Congress, La Cité des Congrès, Nantes, France, 2015.

[32] Cheng, A.F., Weaver, H.A., Conard, S.J., Morgan, M.F., Barnouin-Jha, O., Boldt, J.D., Cooper, K.A., Darlington, E.H., Grey, M.P., Hayes, J.R., Kosakowski, K.E., Magee, T., Rossano, E., Sampath, D., Schlemm, C., and Taylor, H.W., “Long-Range Reconnaissance Imager on New Horizons,” New Horizons. pp. 189–215, 2009, ISBN: 978-0-387-89517-8. doi: 10.1007/978-0-387-89518-5_9.

[33] Hemmati, H., Biswas, A., and Djordjevic, I.B., “Deep-Space Optical Communications: Future Perspectives and Applications”, Proceedings of the IEEE, Vol. 99, No. 11, pp. 2020-39, December 2011. doi: 10.1109/JPROC.2011.2160609

[34] Cracknell, A.P., and Hayes, L., (2007). Introduction to Remote Sensing , 2nd edition, Taylor and Francis, London, ISBN: 978-0-8493-9255-9.

[35] Francis, P.J., “The Demographics of Long-Period Comets,” The Astrophysical Journal, Vol. 635, No. 2, pp. 1348-61, December 2005.

[36] Bailey, M.E., “The Structure and Evolution of the Solar System Comet Cloud,” Monthly Notices of the Royal Astronomical Society, Vol. 204, No. 2, pp. 603-33, 1983. doi: 10.1093/mnras/204.2.603

[37] Emelyanenko, V.V., Asher, D.J., and Bailey, M.E., “The Fundamental Role of the Oort Cloud in Determining the Flux of Comets Through the Planetary System”. Monthly Notices of the Royal Astronomical Society, Vol. 381 No. 2, pp. 779-89, 2007. doi: 10.1111/j.1365-2966.2007.12269.x

[38] Öpik, E.J.,. “Note on Stellar Perturbations of Nearby Parabolic Orbits,” Proceedings of the American Academy of Arts and Sciences, Vol. 67 No. 6, pp. 169-82, 1932. doi: 10.2307/20022899

[39] Perez, T. R., and Subbarao, K., “A Survey of Current Femtosatellite Designs , Technologies , and Mission Concepts,” Journal of Small Satellites, Vol. 5, No. 3, pp. 467–482, 2016.

[40] Tahri, N., Hamrouni, C., and Alimi, A.M., “Study of Current FemtoSatellite Approches and Services,” International Journal of Advanced Computer Science and Applications, Vol. 4, No. 5, pp. 148–153, 2013.

[41] Barnhart, D.J., Vladimirova, T., and Sweeting, M.N., “Satellite Miniaturization Techniques for Space Sensor Networks,” Journal of Spacecraft and Rockets, Vol. 46, No. 2, pp. 469–472, 2009. doi: 10.2514/1.41639

[42] Weis, L.M., and Peck, M.A., “Dynamics of Chip-scale Spacecraft Swarms near Irregular Bodies,” 54th AIAA Aerospace Sciences Meeting, p. 1468, 2016, ISBN: 978-1-62410-393-3. doi: 10.2514/6.2016-1468

[43] Turyshev, S.G., and Toth, V.T., “Imaging Extended Sources with the Solar Gravitational Lens,” Phys. Rev. D, Vol. 100, 084018, 2019. doi:10.1103/PhysRevD.100.084018

[44] Atchison, J.A., Manchester, Z.R., and Peck, M.A., “Microscale atmospheric re-entry sensors,” International Planetary Probe Workshop, 2010.

[45] Vivenzio, S., Fries, D., and Welch, C., “Feasibility and Preliminary Design of a ChipSat Planetary Entry Mission to Investigate the Atmosphere of Venus,” International Astronautical Congress, 2019.

[46] Davenport, J.R.A., Kipping, D.M., Sasselov, D., Matthews, J.M., and Cameron, C., “MOST Observations of Our Nearest Neighbor: Flares on Proxima Centarui,” The Astrophysical Journal Letters, Vol. 829, L31 5 pp., October 2016; do: 10.3847/2041-8205/829/2/L31

[47] Walker, G., Matthews, J., Kuschnig, R., Johnson, R., Rucinski, S., Dunlap, D., Pazder, J., Burley, G., Walker, A., Skaret, K., Zee, R., Grocott, S., Carroll, K., Sinclair, P., Sturgeon, D., and Harron, J., “The MOST Asteroseismology Mission: Ultraprecise Photometry from Space,” Publications of the Astronomical Society of the Pacific, Vol. 115, No. 811 pp.1023-35, September 2003.

[48] Ajlouni, A.W., and Mahasneh, A.A., “Atom Behavior During Nucleus Fission Process”, Journal of Applied Sciences, Vol. 7, No. 12, pp. 1664-68, 2007.

[49] Clark, R.A., and Sheldon, R.B., “Dusty Plasma Based Fission Fragment Nuclear Reactor,” 41st AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit, Tucson, 2005. doi: 10.2514/6.2005-4460

[50] Chapline, G.F., Dickson, P.W., Schnitzler, B.G., “Fission Fragment Rockets – A Potential Breakthrough,” Proc. 1988 International Reactor Physics Conf., ANS, 1988, ISBN 0-89448-141-X.

[51] Beller, D.E., et. al., “Direct Energy Conversion (DEC) Fission Reactors – A U.S. NERI Project,” 12th Pacific Basin Nuclear Conference (PBNC-2000), Seoul, 2000.

[52] Willard, J., “Chemical Effects of Nuclear Transformations”, Annual Review of Nuclear Science, Vol. 3, pp. 193-220, 1953. doi:10.1146/annurev.ns.03.120153.001205

[53] Chahoud, J., Russo, G., and Selleri, F., “Deuteron Production in pp Collisions,” Phys. Rev. Lett., Vol. 11, p. 506, 1963. doi: 10.1103/PhysRevLett.11.506

[54] Conte, M., and MacKay, W.W., An Introduction to the Physics of Particle Accelerators, World Scientific, 1991, ISBN: 981‑02-0812-X.

[55] Shultis, J.K., and Faw, R.E., Fundamentals of nuclear science and engineering, CRC Press, p. 151, 2002, ISBN 978-0-8247-0834-4.

[56] Horton Jr., C.W., and Benkadda, S., ITER Physics, WSPC, 2015, ISBN: 978-9814678667.

[57] E. Lodi-Rizzini, Charlton, M., Hayano, R.S., Rotondi, A., Venturelli, L. and Zurlo, N., “Antihydrogen Formation Mechanisms,” EPJ Web of Conf., Vol. 66, EDP Sciences, 05015, 2014. doi: 10.1051/epjconf/20146605015

[58] Raizen, M. G., Gilligan, J.M., Bergquist, J.C., Itano, W.M., and Wineland, D.J., “Ionic Crystals in a Linear Paul Trap,” Phys. Rev. A, Vol. 45, pp. 6493–6501, 1992. doi: 10.1103/PhysRevA.45.6493

[59] Drewsen, M., Brodersen, C., Hornekaer, L., Hangst, J.S., and Schiffer, J.P., “Large Ion Crystals in a Linear Paul Trap,” Phys. Rev. Lett., Vol. 81, pp. 2878–2881, 1998. doi: 10.1103/PhysRevLett.81.2878

[60] Birkl, G., Kassner, S., and Walther, H., “Multiple-Shell Structures of Laser-Cooled Mg-Ions in a Quadrupole Storage Ring,” Nature, Vol. 357, pp. 310–313, 1992. doi: 10.1038/357310a0

[61] Hasse, R.W., and Schiffer, J.P., “The Structure of the Cylindrically Confined Coulomb Lattice,” Ann. Phys., Vol. 203, pp. 419–448, November 1990. doi: 10.1016/0003-4916(90)90177-P

[62] Habs, D., and Grimm, R., “Crystalline Ion Beams,” Ann. Rev. Nucl. Part. Sci., Vol. 45, pp. 391–428, December 1995. doi: 10.1146/annurev.ns.45.120195.002135

[63] Schiffer, J.P., Crystalline Beams and Related Issues, Proceedings 31st INFN Eloisatron Workshop, Erice, Italy, pp. 217–228, World Scientific, Singapore, 1996.

[64] Wei, J., Okamoto, H., and Sessler, A. M., “Necessary Conditions for Attaining a Crystalline Beam,” Phys. Rev. Lett., Vol. 80, pp. 2606–2609, 1998. doi: 10.1103/PhysRevLett.80.2606

[65] Blümel, R., Chen, J.M., Peik, E., Quint, W., Schleich, W., Shen, Y.R., and Walther, H., “Phase Transitions of Stored Laser-Cooled Ions,” Nature, Vol. 334, pp. 309–313, 1988. doi: 10.1038/334309a0

Jamey D. Jacob and Ben Loh – Inflatable Technologies for Interstellar Missions

[1] Kennedy, K., Raboin, J., Spexarthe, G., and Valle, G., “Inflatable Habitats” in Gosamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications, Jenkins, C. (ed.), AIAA, 2001

[2] Spartan 207/Inflatable Antenna Experiment Flown on STS-77, NASA Goddard, 1997.

[3] Hinkle, J., Dixit, A., Lin, J., Whitley, K., Watson, J., and Valle, G., “Design Development and Testing for an Expandable Lunar Habitat,” AIAA Space Conference, 2008.

[4] Kennedy, Kriss J., “TransHab and the Space Architects”, Fabric Architecture, published Sept.-Oct. 1999, pp. 24-30, 48-50.

[5] Kennedy, Kriss J., “Inflatable Habitat Structure”, NASA MSC-22029, July 5, 1993.

[6] Hughes, S., Dillman, R., Starr, B., Stephan, R., Lindell M., Player, C., and Cheatwood, F. “Inflatable Re-entry Vehicle Experiment (IRVE) Design Overview,” 2005· 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.

[7] https://bigelowaerospace.com/pages/genesis/

[8] Valle, G. and Wells, N. “Bigelow Expandable Activity Module (BEAM) ISS Year – One,” ISSR&D Conference 2017; July 17, 2017 – July 20, 2017; Washington, DC.

[9] Howe, AS, Kennedy, K., Guirgis, P. and Boyle, R. “A Dual-Chamber Hybrid Inflatable Suitlock (DCIS) for Planetary Surfaces or Deep Space,” AIAA 2011-5064, 41st International Conference on Environmental Systems AIAA 2011-5064 17 – 21 July 2011, Portland, Oregon

[10] Littekan, D. and Jones, T. “Development of an Inflatable Airlock for Deep Space Exploration,” 2018 AIAA SPACE and Astronautics Forum and Exposition, 17-19 September 2018, Orlando, FL.

[11] Jacob, J. D., “Development and Testing of Deep Space Habitat Analogs as Part of the eXploration HABitat Program,” 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Dallas, Texas, Jan. 7-10, 2013.

[12] Gill, T. “NASA Advanced Exploration Systems (AES) Habitation Systems Project Deep Space Habitat (DSH),” NASA/KSC, 2012.

[13] Kibble, G., Vega-Recalde, C., and Jacob, J. D. “Martian Greenhouse Design for eXploration HABitat,” 31st Space Symposium, Colorado Springs, CO, April 13, 2015.

[14] Brenner, J., Quinton, A., White, B. and Jacob, J. D. “Design and Testing of a Gateway Inflatable Airlock for the eXploration HABitat Academic Innovation Challenge,” AIAA SciTech, Orlando, FL, 2020.

[15] Cohen, Marc M., ”Space Habitat Design Integration Issues”, SAE 981800, 28 th International Conference on Environmental Systems, Danvers, Massachusetts. July 13-16, 1998, Warrendale, PA: Society of Automotive Engineers, 1998.

[16] Yang, J. C. and K. K. de Groh. “Materials Issues in the Space Environment.” MRS Bulletin 35 (January 2010): 12-19.

[17] Cadogan, D.P., Scarborough S. E. “Rigidizable Materials for Use in Gossamer Space Inflatable Structures,” AIAA-2001-1417, 42nd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit AIAA Gossamer Spacecraft Forum, Seattle, WA: April 16-19, 2001.

[18] Cadogan, D.P., Scheir, C., “Expandable Habitat Technology Demonstration for Lunar and Antarctic Applications”, 2008-01-2024, International Conference on Environmental Systems, San Francisco CA, 29 June – 2 July 2008.

[19] Eckart, P. Lunar Base Handbook, McGraw-Hill, 2006.

[20] Howe, S. (ed.), Out of This World: The New Field of Space Architecture, AIAA, 2009.

[21] Sandra H-M., Sommer, B., Aguzzi, M., “Inflatable Technologies: Adaptability from Dream to Reality.” ACTA Astronautica, 65, (5-6), 841-852, 2009

[22] Asheghian, L., Jacob, J. D. and Smith, S. “Innovative Ground Habitats for Lunar Operational Outpost (IGLOO),” 19th AIAA/ASME/AHS Adaptive Structures Conference, Denver, CO, April 5, 2011.

[23] Roberts, M., Inflatable Habitation for the Lunar Base, NASA Report No. CP-3166, Vol. 1, 1992.

[24] Stein, M. and Hedgepeth, J., “Analysis of Partly Wrinkled Membranes,” NASA TN D-813, July, 1961.

[25] Pedretti, M., “Tensairity,” European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004, 24—28 July 2004.

[26] de la Fuente, H., Raboin, J., Spexarthe, G., and Valle, G., “TransHab: NASA’s Large-Scale Inflatable Spacecraft,” AIAA Space Inflatables Forum; Structures, Structural Dynamics, and Materials Conference, 3-6 April 2000, Atlanta GA.

[27] Kennedy, K. “TransHab Project,” in Out of This World: The New Field of Space Architecture, Howe, S. (ed.), AIAA, 2009.

[28] Xu, Z., & Gao, C. (2015). Graphene fiber: a new trend in carbon fibers. Materials Today, 18(9), 480–492. https://doi.org/10.1016/j.mattod.2015.06.009

[29] Hall, T., “Artificial Gravity” in Out of This World: The New Field of Space Architecture, Howe, S. (ed.), AIAA, 2009

[30] Joosten, B. Kent. (2002) Preliminary Assessment of Artificial Gravity Impacts to Deep-Space Vehicle Design. NASA Johnson Space Center Document No. JSC-63743.

[31] Barbeau, Z., Fehrenbach, S., Jacob, J. D., “Development and Testing of an Inflatable Artificial Gravity System,” AIAA SciTech, Orlando, FL, 2013.

[32] Hill, J. and Jacob, J. D., “Deployment Dynamics of a Inflatable Space Habitat,” AIAA AerospaceSciences Meeting, Orlando, Florida, 2010.

[33] Cadogan, D., Grahne, M., “Deployment Control Mechanisms for Inflatable Space Structures,” 33rd Aerospace Mechanisms Conference, May 1999.

[34] Mallove, E., Matloff, G. The Starflight Handbook: A Pioneer’s Guide to Interstellar Travel, Wiley, 1989.

[35] Allred R., Hoyt, A., Harrah, L., McElroy, P., Scarborough, S., Cadogan, D., “Light Curing Rigidizable Inflatable Wing,” AIAA-2004-1809, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA, April 2004.

[36] Kearns, J., Usui, M., Smith, S., Scarborough, S., Smith, T., Cadogan, D., “Development of UV- Curable Inflatable Wings for Low Density Flight Applications,” AIAA-2004-1503, 45th AIAA Gossamer Spacecraft Forum, Palm Springs, CA, April 2004.

Geoffrey A. Landis – Negative Mass in Contemporary Physics, and its Application to Propulsion

[1] Visser, M., “12: Energy Conditions,” in Lorentzian Wormholes, American Institute of Physics Pess, Woodbury NY (1995), pp. 115-136. ISBN 1-56396-394-9

[2] Bondi, H., “Negative Mass in General Relativity,” Review of Modern Physics, Vol. 29, No. 3 (1957), pp. 423-428.

[3] Forward, R. L., “Negative Matter Propulsion,” Journal of Propulsion and Power, Vol. 6, No. 1 (1990), pp. 28-37.

[4] Landis, G. A., “ Comments on Negative Mass Propulsion,” Journal of Propulsion and Power, Vol. 7, No. 2 (1991), p. 304.

[5] Morris, Michael S., and Kip S. Thorne. “Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity.” American Journal of Physics 56, No. 5 (1988), pp. 395-412.

Geoffrey A. Landis – Power Systems for Miniature Interstellar Flyby Probe

[1] Lubin, Philip, et al. “Directed Energy for Relativistic Propulsion and Interstellar Communications.” Journal of the British Interplanetary Society, 68, No. 5/6 (2015): 172.

[2] Brashears, Travis, et al. “Directed energy interstellar propulsion of wafersats.” Nanophotonics and Macrophotonics for Space Environments IX. Vol. 9616. International Society for Optics and Photonics, 2015.

[3] Parkin, Kevin LG. “The breakthrough Starshot system model.” Acta Astronautica, 152 (2018): 370-384.

[4] Messerschmitt, David G. “Design for minimum energy in interstellar communication.” Acta Astronautica, 107 (2015): 20-39.

[5] Frisch, P. C., Redfield, S. and Slavin, J. D. “The interstellar medium surrounding the Sun”. Annu. Rev. Astron. Astrophys., 49 (2011): 237–279.

[6] Gurnett, DA., and Kurth, WS. “Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments,” Nature Astronomy, 3, 1(2019): 024–1028. doi:10.1038/s41550-019-0918-5

[7] Cosmo, Mario L., and Lorenzini, Enrico C.. Tethers in space handbook, Chapter 4.4, “Electrodynamics.” NASA/CR-97-206807 (1997): 137-152. https://ntrs.nasa.gov/search.jsp?R=19980018321

[8] Shulyak, D., et al.. “Magnetic fields in M dwarfs from the CARMENES survey”. Astronomy & Astrophysics, 626 (2019): A86.

[9] Yadav, Rakesh K., Christensen, Ulrich R., Wolk, Scott J. and Poppenhaeger, Katja. “Magnetic cycles in a dynamo simulation of fully convective M-star Proxima Centauri.” The Astrophysical Journal Letters, 833, No. 2 (2016): L28.

David Messerschmitt – Challenges in Low-mass Interstellar Probe Communication

[1] Lubin, P., “A Roadmap to Interstellar Flight,” Jour. British Interplanetary Soc., Vol. 69, 2016, pp. 40–72.

[2] Lubin, P., Messerschmitt, D., and Morrison, I., “Challenges in Scientific Data Communication from Low-Mass Interstellar Probes,” , 2019. URL https://arxiv.org/abs/1801.07778v3.

Marc G. Millis – Breakthrough Propulsion Study – Assessing Interstellar Flight Challenges and Prospects

[1] Millis, M. G., Greason, J., and Stevenson, R. (2018). “Breakthrough Propulsion Study: Assessing Interstellar Flight Challenges and Prospects.” NASA HQ-E-DAA-TN60290.

[2] Forward, R. (1976). A Program for Interstellar Exploration (to congress), JBIS 29: 611-632.

[3] Mallove & Matloff (1989). The Starflight Handbook, New York: John Wiley & Sons.

[4] Mauldin, J. H. (1992), Prospects for Interstellar Travel, Science and Technology Series, 80, of the American Astronautical Society.

[5] Chew, G. et al (2001). Interstellar Spaceflight Primer. (SAIC) NASA Contract No. NASW-5067.

[6] Gilster, P. (2004). Centauri Dreams, Imagining and Planning Interstellar. Exploration. Springer.

[7] British Interplanetary Society (2010). Interstellar Studies. JBIS, 63: 419-448.

[8] British Interplanetary Society (2013). 100 Year Starship Study 2011: Time Distance Solutions. JBIS, 66: 278-296.

[9] British Interplanetary Society (2015). Tennessee Valley Interstellar Workshop 2014: 100 Year Starship Study 2011: Time Distance Solutions, Icarus Interstellar Starship Congress 2013. JBIS, 68: 67-127.

[10] Messerschmitt, D. (2017). Communicating Scientific Data Back to Earth. In TVIW, Huntsville AL. https://tviw.us/2017-presentation-video-archive/, Presentation “5.” Accessed 6 June 2018.

[11] Derleth, et al (2005). A Structured Approach to Strategic Decision Making for NASA’s Technology Development. In Proceedings Conference Systems Engineering Research 2005. In Hoboken, NJ, USA. ISBN 0-615-12843-2.

[12] Gilland, J. (2013). “Aspects of Technology Program Planning: Top-Down to Bottom-Up,” AIAA Paper No. AIAA 2013-4166. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose CA.

[13] Air Force Research Lab (AFRL). (2004). Technology Readiness Level (TRL) Calculator Version 2.2 developed by the Air Force Research Laboratory as of 17 May 2004. https://www.dau.mil/cop/stm/Lists/Tools/DispForm.aspx?ID=4&ContentTypeId=0x010051CD3A8A368D5347A6595B3B5385510700AA867A0513EB0A44B7EC5897985C3BB8

[14] Foster, R. (1986). Innovation: The Attacker’s Advantage, Summit Books, New York, NY.

[15] Webb, D. (2014). Linking Performance, Schedule, Cost, and Risk Using Technology Forecasting and Readiness Assessment, AIAA 2014-4483.

Kenneth Roy – Terraforming Venus, and Similar Planets, Using a Pneumatically Supported Shell

[1] “Venus Facts & Figures” NASA. Solar System Exploration (Last updated 29 August 2006) URL: http://sse.jpl.nasa.gov/planets/profile.cfm?Object=Venus&Display=Facts [Retrieved 4 October 2019].

[2] Fimmel, R. O., Colin, L., Burgess, E., Pioneer Venus, NASA SP-461, 1983.

[3] Fogg, M.J., Terraforming: Engineering Planetary Environments, Society of Automotive Engineers, Warrendale, PA, 1995, pp.333-397.

[4] Beech M., Terraforming: The Creating of Habitable Worlds, Springer, New York, 2009, pp. 175-206.

[5] Landis, G. A., “Colonization of Venus,” Proceeding of the Conference on Human Space Exploration, Space Technology &Applications International Forum, Albuquerque, NM, 2003.

[6] Young, W. C., Budynas, R. G., Sadegh, A. M., Roark’s Formulas for Stress and Strain, 8th ed., McGraw Hill, New York, 2012, pp. 614.

[7] Roy, K. I., Kennedy III, R. G., and Fields, D.E., “Shell Worlds: An Approach to Terraforming Moons, Small Planets and Plutoids,” JBIS, Vol 62, No. 1, 2009, pp. 32–38.

[8] Roy, K. I., Kennedy III, R. G., and Fields, D.E., “Shell Worlds: The Question of Shell Stability,” JBIS, Vol 67, No 10, 2014, pp. 364–368.

[9] Machado, P. M., Dynamics of Venus’ Atmosphere: Characterization of its Global Circulation with Droppler Velocimetry, Scholars’ Press, Saarbrucken, Germany, 2013.

[10] Taylor, F., Grinspoon, D., “Climate evolution of Venus,” Journal of Geophysical Research, Vol 114, 2009.

[11] Goody, R. M., Walker, J. C. G., Atmospheres, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

[12] Wickramasinghe, N.C., and Wickramasinghe, J.T., “On the possibility of microbiota transfer from Venus to Earth,” Astrophys Space Science, 2008, pp. 317-133.

[13] Badescu, V., Zacny, K. (ed.) (2015). Inner Solar System: Prospective Energy and Material Resources. Heidelberg: Springer-Verlag GmbH. p. 492, (Based on Technica Molodezhi TM – 9 1971).

[14] Koebel, M., Rigacci, A., and Achard, P., “Aerogel-based thermal superinsulation: an overview,” J Sol-Gel Sci Technol, Vol 63, 2012, pp. 315-339. doi: 10.1007/s10971-012-2792-9

[15] Dawson, J. W., and Livesy, W., “3He on Venus and Mercury,” Bulletin of the American Physical Society, Vol 31, 1986, pp. 1393.

James S.J. Schwartz – Near-Earth Resources: Short-Term Limitations with Interstellar Consequences

[1] Lewis, John. 2015. Asteroid Mining 101: Wealth for the New Space Economy. Deep Space Industries.

[2] Kloos, Jacob, Moores, John, Sangha, Jasmeer, et al. 2019. The Temporal and Geographic Extent of Seasonal Cold Trapping on the Moon. Journal of Geophysical Research: Planets 124; https://doi.org/10.1029/2019JE006003

[3] Crawford, Ian. 2015. Lunar Resources: A Review. Progress in Physical Geography 39: 137-167.

[4] Harris, Alan, and D’Abramo, Germano. 2015. The Population of Near-Earth Asteroids. Icarus 257: 302-312.

[5] Anthony, Niklas, and Reza Emami, M. 2018. Asteroid Engineering: The Sate-of-the-Art of Near-Earth Asteroids Science and Technology. Progress in Aerospace Sciences 100: 1-17.

[6] Sanchez, Joan-Pau, and McInnes, Colin. 2013. Available Asteroid Resources in the Earth’s Neighbourhood. In Asteroids: Prospective Energy and Material Resources, edited by Viorel Badescu, pp. 439-458. Springer.

[7] Elvis, Martin. 2014. How Many Ore-Bearing Asteroids? Planetary and Space Science 91: 20-26.

[8] Jedicke, Robert, et al. 2018. Availability and Delta-v Requirements for Delivering Water Extracted From Near-Earth Objects to Cis-Lunar Space. Planetary and Space Science 159: 28-42.

[9] Rivkin, Andrew, and DeMeo, Francesca. 2019. How Many Hydrated NEOs Are There? Journal of Geophysical Research: Planets 124: 128-142.

[10] Milligan, Tony, and Elvis, Martin. 2019. Mars Environmental Protection: An Application of the 1/8th Principle. In The Human Factor in a Mission to Mars: An Interdisciplinary Approach, edited by Konrad Szocik, pp. 167-183. Springer.

[11] Schwartz, James. 2020. The Value of Science in Space Exploration. Oxford University Press.

Catherine L. Smith – Farmer in the Sky

[1] Lloyd-Price, J., Mahurkar, A., Rahnavard, G., Crabtree, J., Orvis, J., Hall, A.B., Brady, A., Creasy, H.H., McCracken, C., Giglio, M.G., McDonald, D., Franzosa, E.A., Knight, R., White, O., Huttenhower, C., “Strains, Functions and Dynamics in the Expanded Human Microbiome Project,” Nature, Vol. 5, No. 7674, 2017, pp. 61-66. doi: 10.1038/nature23889

[2] Leimbach A., Hacker J., and Dobrindt U. “E. coli as an All-Rounder: The Thin Line Between Commensalism and Pathogenicity,” Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, Dobrindt U., Hacker J., Svanborg C. (eds) vol 358. Springer, Berlin, Heidelberg, 2013, pp. 3-32. doi: 10.1007/82_2012_303

[3] Cottin, H., and Rettberg, P., “EXPOSE-R2 on the International Space Station (2014–2016): Results from the PSS and BOSS Astrobiology Experiments” Astrobiology, Vol. 19, No. 8, 29 Jul. 2019, pp. 975-978. doi: 10.1089/ast.2019.0625

[4] Szczuka, E., Telega, K., and Kaznowski, A., “Biofilm Formation by Staphylococcus hominis Strains Isolated from Human Clinical Specimens,” Folia Microbiologica, Vol. 60, No. 1, Jan. 2015, pp. 1-5.

[5] Roy, R., Tiwari, M., Donelli, G., and Tiwaria,V., “Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action,” Virulence, Vol. 9, No. 1, 31 Mar 2018, pp. 522-553. doi: 10.1080/21505594.2017.1313372

[6] Klintworth, R., Reher, H.J., Viktorov, A.N., and Bohle, D., “Biological Induced Corrosion of Materials II: New Test Methods and Experiences from MIR Station,” Acta Astronaut, Vol. 44, Apr-Jun. 1999, pp. 569-578.

[7] Mora, M., Wink, L., Kögler, I., Mahnert, A., Rettber, P., Schwendner, P., Demets, R., Cockell, C., Alekhova, T., Klingl, A., Krause, R., Zolotariof A., Alexandrova, A., and Moissi-Eichinger, C., “Space Station Conditions are Selective but Do Not Alter Microbial Characteristics Relevant to Human Health,” Nature Communications, Vol. 10, 1 3990 5 Sept 2019, pp. 1-18. doi: 10.1038/s41467-019-11682-z

[8] Sobisch1, L-Y., Rogowski1, K.M., J Fuchs, J., Schmieder, W., Vaishampayan, A., Oles, P., Novikova, N., and Grohmann, E., “Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station”, Frontiers in Microbiology, published online 19 Mar 2019.doi: 10.3389/fmicb.2019.00543

[9] Sielaff, A.C., Urbaniak, C., Mohan, G.B.M., Stepanov, V.G., Tran, Q., Wood, J.M., Minich, J., McDonald, D., Mayer, T., Knight, R., Karouia, F., Fox, G.E., and Venkateswaran, K., “Characterization of the Total and Viable Bacterial and Fungal Communities Associated with the International Space Station Surfaces,” Microbiome, published online 08 Apr 2019. doi: 10.1186/s40168-019-0666-x

[10] Hawksworth, D.L. and Lücking, R., “Chapter 4 : Fungal Diversity Revisited: 2.2 to 3.8 Million Species” The Fungal Kingdom, edited by J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James , N. Gow, ASM Press, Washington, DC, 2017, pp. 79-95.

[11] Pasolli, E., Asnicar, F., Manara S., Zolfo, M., Karcher, N., Armanini, F., Beghini, F., Manghi, P., Tett, A., Ghensi, P., Collado, M., Rice, B. L., DuLong, C., Morgan, X. C., Golden, C. D., Quince, C., Huttenhower, C., Segata, N., “Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle,” Cell, Vol. 176, No. 3, 24 Jan 2019, pp. 649-662.

[12] Dara, S. K., “The New Integrated Pest Management Paradigm for the Modern Age,” Journal of Integrated Pest Management, Vol. 10, No. 1, 29 Apr 2019, pp. 1-9.

[13] Arsenakis, I., Boyen, F., Haesebrouck, F., Maes, D.G.D., “Autogenous Vaccination Reduces Antimicrobial Usage and Mortality Rates in a Herd Facing Severe Exudative Epidermitis Outbreaks in Weaned Pigs,” The Veterinary Record, Vol. 186, No. 26, 30 Jun 2018, pp. 1-8. doi: 10.1136/vr.104720

[14] Silver, S., “Bacterial Silver Resistance: Molecular Biology and Uses and Misuses of Silver Compounds,” FEMS Microbiology Reviews, Vol. 27, No. 2-3, Jun 2003, pp. 341-353. doi: 10.1016/S0168-6445(03)00047-0

[15] Jassim, S.A.A., and Limoges R.G., “Natural Solution to Antibiotic Resistance: Bacteriophages ‘The Living Drugs’,” World Journal of Microbiology & Biotechnology, Vol. 30, No. 8, 30 Apr 2014, pp. 2153-2170. doi: 10.1007/s11274-014-1655-7

Kelly C. Smith – When Does a Leap of Faith Take Us Too Far?

[1] Smith, Kelly C. (2015) “The Smallest Step of Faith: A new worldview for a postmodern world?” In Am. J. Sociological Research, 5(3A): 1-12. Available online here: http://article.sapub.org/10.5923.s.sociology.201501.01.html

Grover A. Swartzlander – Diffractive Light Sails

[1] Y.J. Chu, N. Tabiryan, and G.A. Swartzlander, “Experimental Verification of a Bi-Grating Beam-Rider,” To Appear in Physical Review Letters

[2] P.R. Srivastava, Y.J. Chu, and G.A. Swartzlander, Jr., “A Stable Diffractive Beam-Rider,” Optics Letters 44, 3082-3085 (2019)

[3] A. Dubill and G.A. Swartzlander “Circumnavigating the Sun with Diffractive Solar Sails,” Submitted to Journal of Guidance, Control, and Dynamics

[4] Y.J. Chu, E. M. Jansson, and G.A. Swartzlander, “Measurements of Radiation Pressure Owing to the Grating Momentum,” Physical Review Letters 121, 063903 (1-6, plus supplement) (2018)

[5] G. A. Swartzlander, “Flying on a Rainbow – A Solar-Driven Diffractive Sailcraft,” J. British Interplanetary Society 71, 130 (2018)

[6] G. A. Swartzlander, “Radiation Pressure on a Diffractive Sailcraft,” J. Optical Society of America B 34, C25-30 (2017)

Timothy D. Swindle – Interstellar Material within the Solar System

[1] Hynes, K.M. and Gyngard, F., “The Presolar Grain Database: Http://Presolar.Wustl.Edu/~Pgd.,” Lunar & Planetary Science Conference, 2009, Vol. XL, Abstract #1198.

[2] Bernatowicz, T., Fraundorf, G., Tang, M., Anders, E., Wopenka, B., Zinner, E., and Franundorf, P., “Evidence for Interstellar Sic in the Murray Carbonaceous Meteorite,” Nature, 1987, Vol. 330, pp. 728-730.

[3] Lewis, R.S., Ming, T., Wacker, J.F., and Steele, I.M., “Interstellar Diamonds in Meteorites,” Nature, 1987, Vol. 326, pp. 160-162.

[4] Clayton, D.D. and Nittler, L.R., “Astrophysics with Presolar Stardust,” Annual Review of Astronomy and Astrophysics, 2004, Vol. 42, pp. 39-78.

[5] Zinner, E.K., “Presolar Grains,” Treatise on Geochemistry, edited by A.M. Davis, Elsevier, Oxford, 2014, pp. 17-39.

[6] Nittler, L.R., “Presolar Stardust in Meteorites: Recent Advances and Scienti¢C Frontiers,” Earth & Planetary Science Letters, 2003, Vol. 209, pp. 259-273.

[7] Grun, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J., and Taylor, A., “Discovery of Jovian Dust Streams and Interstellar Grains by the Ulysses Spacecraft,” Nature, 1993, Vol. 362, pp. 428-430.

[8] Krüger, H., Strub, P., Grün, E., and Sterken, V.J., “16 Years of Ulysses Interstellar Dust Measurements in the Solar System: I. Mass Distribution and Gas-to-Dust Mass Ratio,” Astrophysical Journal, 2015, Vol. 812, Article Number 139.

[9] Westphal, A.J., Bechtel, H.A., Brenker, F.E., Butterworth, A.L., Flynn, G., Frank, D.R., Gainsforth, Z., Hillier, J.K., Postberg, F., Simionovici, A.S., Sterken, V.J., Stroud, R.M., Allen, C., Anderson, D., Ansari, A., Bajt, S., Bastien, R.K., Bassim, N., Borg, J., Bridges, J., Brownlee, D.E., Burchell, M., Burghammer, M., Changela, H., Cloetens, P., Davis, A.M., Doll, R., Floss, C., Grün, E., Heck, P.R., Hoppe, P., Hudson, B., Huth, J., Hvide, B., Kearsley, A., King, A.J., Lai, B., Leitner, J., Lemelle, L., Leroux, H., Leonard, A., Lettieri, R., Marchant, W., Nittler, L.R., Ogliore, R., Ong, W.J., Price, M.C., Sandford, S.A., Tresseras, J.-A.S., Schmitz, S., Schoonjans, T., Silversmit, G., Solé, V.A., Srama, R., Stadermann, F., Stephan, T., Stodolna, J., Sutton, S., Trieloff, M., Tsou, P., Tsuchiyama, A., Tyliszczak, T., Vekemans, B., Vincze, L., Von Korff, J., Wordsworth, N., Zevin, D., Zolensky, M.E., and >30, S.h.d., “Final Report of the Stardust Interstellar Preliminary Examination,” Meteoritics & Planetary Science, 2014, Vol. 49, pp. 1720-1733.

[10] Westphal, A.J., Bridges, J.C., Brownlee, D.E., Butterworth, A.L., De Gregorio, B.T., Dominguez, G., Flynn, G.J., Gainsforth, Z., Ishii, H.A., Joswiak, D., Nittler, L.R., Ogliore, R.C., Palma, R., Pepin, R.O., Stephan, T., and Zolensky, M.E., “The Future of Stardust Science,” Meteoritics & Planetary Science, 2017, Vol. 52, pp. 1859-1898.

[11] Altobelli, N., Postberg, F., Fiege, K., Trieloff, M., Kimura, H., Sterken, V.J., Hsu, H.-W., Hillier, J., Khawaja, N., Moragas-Klstermeyer, G., Blum, J., Burton, M., Strama, R., Kempf, S., and Grün, E., “Flux and Composition of Interstellar Dust at Saturn from Cassini’s Cosmic Dust Analyzer,” Science, 2016, Vol. 352, pp. 312-318.

[12] Krolikowska, M., “A Study of the Original Orbits of “Hyperbolic” Comets,” Astronomy & Astrophysics, 2001, Vol. 376, pp. 316-324.

[13] Bannister, M.T., Bhandare, A., Dybczyński, P.A., Fitzsimmons, A., Guilbert-Lepoutre, A., Jedicke, R., Knight, M.M., Meech, K.J., McNeill, A., Pfalzner, S., Raymond, S.N., Snodgrass, C., Trilling, D.E., Ye, Q., and The ‘Oumuamua, I.T., “The Natural History of ‘Oumuamua,” Nature Astronomy, 2019, Vol. 3(7), pp. 594-602. doi: 10.1038/s41550-019-0816-x

[14] International Astronomical Union Minor Planet Center, “Comet C/2019 Q4 (Borisov),” 2019, MPEC 2019-R106.

[15] “JPL Small-Body Database Browser C/2019 Q4 (Borisov),” 2019, [Accessed 2019 10/22], Available from: https://ssd.jpl.nasa.gov/sbdb.cgi?sstr=1003639.

[16] Gray, B., “FAQ for gb00234 = C/2019 Q4 = 2i (Borisov),” 2019, [Accessed 2019 10/22], Available from: https://projectpluto.com/temp/2i.htm.

[17] Guzik, P., Drahus, M., Rusek, K., Waniak, W., Cannizzaro, G., and Pastor-Marazuela, I., “Initial Characterization of Interstellar Comet 2I/Borisov,” Nature Astronomy, 2019. doi: 10.1038/s41550-019-0931-8

[18] Meech, K.J., Weryk, R., Micheli, M., Kleyna, J.T., Hainaut, O.R., Jedicke, R., Wainscoat, R.J., Chambers, K.C., Keane, J.V., Petric, A., Denneau, L., Magnier, E., Berger, T., Huber, M.E., Flewelling, H., Waters, C., Schunova-Lilly, E., and Chastel, S., “A Brief Visit from a Red and Extremely Elongated Interstellar Asteroid,” Nature, 2017, Vol. 552, pp. 378-381. doi: 10.1038/nature25020

[19] Jewitt, D., Luu, J., Rajagopal, J., Kotulla, R., Ridgway, W., and Augusteijn, T., “Interstellar Interloper 1i/2017 U1: Observations from the Not and Wiyn Telescopes,” Astrophys. J. Lett., 2017, Vol. 850, pp. L36-L42. doi: 10.3847/2041-8213/aa9b2f

[20] Trilling, D.E., Mommert, M., Hora, J.L., Farnocchia, D., Chodas, P., Giorgini, J., Smith, H.A., Carey, S., Lisse, C.M., Werner, M., McNeill, A., Chesley, S.R., Emery, J.P., Fazio, G., Fernandez, Y.R., Harris, A., Marengo, M., Mueller, M., Roegge, A., Smith, N., Weaver, H.A., Meech, K., and Micheli, M., “Spitzer Observations of Interstellar Object 1i/‘Oumuamua,” Astronomical Journal, 2018, Vol. 156, Article 261. doi: 10.3847/1538-3881/aae88f

[21] McNeill, A., Trilling, D.E., and Mommert, M., “Constraints on the Density and Internal Strength of 1i/’Oumuamua,” Astrophys. J. Lett., 2018, Vol. 857, Number 1. doi: 10.3847/2041-8213/aab9ab

[22] Micheli, M., Farnocchia, D., Meech, K.J., Buie, M.W., Hainaut, O.R., Prialnik, D., Schörghofer, N., Weaver, H.A., Chodas, P.W., Kleyna, J.T., Weryk, R., Wainscoat, R.J., Ebeling, H., Keane, J.V., Chambers, K.C., Koschny, D., and Petropoulos, A.E., “Non-Gravitational Acceleration in the Trajectory of 1I/2017 U1 (‘Oumuamua),” Nature, 2018, Vol. 559, pp. 223-226.

[23] Fitzsimmons, A., Hainaut, O., Meech, K.J., Jehin, E., Moulane, Y., Opitom, C., Yang, B., Keane, J.V., Kleyna, J.T., Micheli, M., and Snodgrass, C., “Detection of CN Gas in Interstellar Object 2I/Borisov,” 2019, arXiv:1909.12144

[24] Kareta, T., Andrews, J., Noonan, J.W., Harris, W.M., Smith, N., O’Brien, P., Sharkey, B.N.L., Reddy, V., Springmann, A., and Lejoly, C., “Carbon Chain Depletion of 2I/Borisov,” arXiv:1910.03222

[25] Opitom, C., Fitzsimmons, A., Jehin, E., Moulane, Y., Hainaut, O., Meech, K.J., Yang, B., Snodgrass, C., Micheli, M., Keane, J.V., Benkhaldoun, Z., and Kleyna, J.T., “2i/Borisov: A C2 Depleted Interstellar Comet,” 2019, arXiv:1910.09078.

[26] Hein, A.M., Perakis, N., Eubanks, T.M., Hibberd, A., Crowl, A., Hayward, K., Kennedy, R.G., and Osborne, R., “Project Lyra: Sending a Spacecraft to 1i/’Oumuamua (Former a/2017 U1), the Interstellar Asteroid,” Acta Astronautica, 2019, Vol. 161, pp. 522-561. doi: 10.1016/j.actaastro.2018.12.042

[27] Seligman, D. and Laughlin, G., “The Feasibility and Benefits of in Situ Exploration of ‘Oumuamua-Like Objects,” Astronomical Journal, 2018, Vol. 155, pp. Article 217. doi: 10.3847/1538-3881/aabd37

[28] Hibberd, A., Perakis, N., and Hein, A.M., “Sending a Spacecraft to Interstellar Comet C/2019 Q4 (Borisov),” 2019, ArXiv:1909.06348.

[29] “New Horizons: Nasa’s Mission to Pluto and the Kuiper Belt,” 2019, [Accessed 2019 10/23], Available from: http://pluto.jhuapl.edu/Mission/Where-is-New-Horizons.php#Passing-Planets.

Deana L. Weibel – Inevitability, Adaptability, Destiny: Religious and Non-Religious Arguments for a Human Future in Outer Space

[1] Weibel, D. L., and Swanson, G. E., “Malinowski in Orbit: ‘Magical Thinking’ in Human Spaceflight,” Quest: The History of Spaceflight Quarterly, vol. 13, 2006, pp. 53–61.

[2] Turner, V. W., and Turner, E. L. B., Image and pilgrimage in Christian culture, New York: Columbia University Press, 2011.

[3] Eade, J., and Sallnow, M. J., Contesting the sacred: the anthropology of pilgrimage, Eugene, OR: Wipf and Stock Publishers, 2013.

[4] Messeri, L., Placing outer space an Earthly ethnography of other worlds, Durham: Duke University Press, 2016.

[5] Olson, V., Into the extreme U.S. environmental systems and politics beyond Earth, Minneapolis: University of Minnesota Press, 2018.

[6] Saethre, E., “UFOs, Otherness, and Belonging: Identity in Remote Aboriginal Australia,” Social Identities, vol. 13, 2007, pp. 217–233.

[7] Oman-Reagan, M., “Xenolinguistics, SETI, and Pre-Colonial Anthropology,” The Winnower, 2015.

[8] Mead, M., “‘Does it Matter What Women Think about Space?”,” Speaking of Space: The Best from Space Digest, R.M. Skinner and W. Leavitt, eds., Boston, MA: Little, Brown and Company, 1962.

[9] Geertz, C., and Darnton, R., The interpretation of cultures: selected essays, New York: Basic Books, 2017.

[10] Boyer, P., Religion explained: the human instincts that fashion gods, spirits and ancestors, London: Vintage, 2002.

[11] Lakoff, G., and Johnson, M., Metaphors we live by, Chicago, Ill.: Univ. of Chicago Press.

[12] Dunbar, B., “Christmas in the Heavens,” NASA Available: https://www.nasa.gov/vision/space/livinginspace/Christmas_in_space.html.

[13] “Celestial Cities and the Roads That Connect Them,” NASA Available: https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA10227.

[14] Marcus, G. E., “Ethnography in/of the World System: The Emergence of Multi-Sited Ethnography,” Annual Review of Anthropology, vol. 24, 1995, pp. 95–117.

[15] Valentine, D., “Exit Strategy: Profit, Cosmology, and the Future of Humans in Space,” Anthropological Quarterly, vol. 85, 2012, pp. 1045–1067.

[16] Launius, R. D., “Escaping Earth: Human Spaceflight as Religion,” Astropolitics, vol. 11, 2013, pp. 45–64.

[17] Harrison, A. A., “Astrotheology and Spaceflight: Prophecy, Transcendence and Salvation on the High Frontier,” Theology and Science, vol. 12, Feb. 2014, pp. 30–48.